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The direct simulation of the hydrodynamics of falling films is a computationally difficult task. Especially
in the case of wavy turbulent films the required effort is beyond the current computational capabilities.
An alternative approach is to reduce the complexity of the problem using experimental information. In
this spirit the present work focuses on the reconstruction of film thickness traces employing information
acquired from experimental data. The reconstruction procedure for large waves is quite straightforward
utilizing directly descriptive parameter distributions found from the analysis of experimental data. The
rest of the film waves are reconstructed based on three criteria: their heights obey a ‘‘universal distribu-
tion”, their frequency is selected to match the experimental film thickness frequency and the overall film
thickness time trace obeys a Weibull distribution. The final reconstruction algorithm is tested for wavy
turbulent films over a broad range of Reynolds numbers with satisfactory results. Apart from efficient
the code is robust and fast.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The study of free falling films using both theoretical and
experimental means is an evergreen subject able to produce re-
sults of widespread utilization. Liquid falling films are encoun-
tered in common process equipment in which heat and mass
transfer processes occur (Collier, 1972). For instance, food indus-
try has a major interest on the optimized design and operation of
direct contact falling film evaporators and condensers (Kara-
pantsios and Karabelas, 1995). Another important application of
free falling films is gas absorption towers whose performance
is strongly influenced by the film characteristics and especially
from its surface waves structure (Webb, 1994). This is mainly
due to the strong mass/heat transfer enhancement induced by
surface waves not only by increasing the gas/liquid interfacial
area but chiefly by creating a transverse velocity profile in the
falling film.

There is a large amount of experimental work on the subject but
despite its significance experimental data can offer only limited
information on the film flow field (Ambrosini et al., 2002; Adomeit
and Renz, 2000). On the contrary, theoretical modeling can give (at
least in principle) the complete spatial and temporal description of
the flow field and the surface structure of the film. Unfortunately,
modeling of falling film hydrodynamics is not a simple task and de-
spite the many efforts the current ability to predict the falling film
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characteristics is limited (Alekseenko et al., 1985; Chang et al.,
1996; Meza and Balakotaiah, 2008). For the case of laminar flow
there are no fundamental difficulties for the modeling task; the
governing equations can be easily written down. The only problem
is the very high computational effort required due the chaotic nat-
ure of the flow and the large aspect ratio (length/thickness) which
must be considered in order to follow the development of the film
characteristics.

Several approximating strategies for the reduction of the com-
putational effort can be found in literature. In older studies the
complete set of equations is solved for a pre-specified wave geom-
etry that is determined from experimental observations (Wasden
and Dukler, 1989). An alternative approach is the reduction of
the set of the governing equations to an evolution problem for
the film interface which can be solved efficiently for arbitrary flow
length. Approaches of this type are met under the names of long
wave equation (Benney, 1966), first and second order boundary
layer approximation (Yu et al., 1995) and h–q (Mudunuri and Bal-
akotaiah, 2006) model. Their common feature is the omission of
some terms in the complete set of equations, the assumption of
the shape of the transverse velocity profile and the application of
a weighted residual principle to construct the equations for the un-
known coefficients of the assumed shape.

The recent increase in computer power allowed also the solu-
tion of the complete system of equations to simulate large aspect
ratio domains using periodic boundary conditions (Malamataris
et al., 2002) or following the development of waves (Malamataris
and Balakotaiah, 2008). Nevertheless, even more computer power
is needed to reach the region of fully developed waves. Also the ad-
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vance of techniques in the spirit of Volume of Fluid (VOF) permits
the direct simulation of the evolution of falling films – avoiding
interface tracking – in two or even three dimensions using the
complete Navier Stokes equation (Kunugi and Kino, 2005; Kunugi
et al., 2005). For computational reasons this approach is restricted
to Reynolds numbers less than 100.

No simulation efforts for the case of turbulent wavy flow film
can be found in literature except one based on a pre-specified wave
shape (Ye et al., 2002). In turbulent wavy films the direct simula-
tion based on Navier Stokes is out of the question for
computational reasons whereas the use of Reynolds Averaged Na-
vier Stokes with some k�e model introduces a new factor of
uncertainty.

In brief, the experimental approach suffers from limited capac-
ity for detailed and accurate information whereas the theoretical
approach needs more computing power. An idea to overcome the
disadvantages of the two approaches is to combine them. A possi-
ble way to do it is by reconstruction of a long interface shape (not
just of a single wave as in the old approach but of a large time-span
where many waves occur) determined from experimental data and
then solve the governing equations in this known geometry. Evi-
dently, such efforts are most valuable for high Reynolds numbers
where other theoretical approaches fail. Along this line of thinking
and taking into account the stochastic nature of the film shape evo-
lution (in the sense of deterministic chaos) Touglidis et al. (2004)
proposed a procedure for the reconstruction of thickness versus
time traces, h(t), of wavy turbulent falling films. Traces were pro-
duced algorithmically to exhibit similar local wave features and
integral statistical properties with the experimentally measured
traces. Data were from a single measuring station located 2.5 m
downstream from liquid entry where the flow was considered as
fully developed. Yet, Touglidis et al. approach was successful only
for Re < 5500.

In the present work a new reconstruction technique is proposed
using data of film thickness from four measuring stations along the
flow and for a much broader range of Reynolds numbers. The final
scope of the general reconstruction approach is to be able to create
dynamic film thickness shape h(x, t) (x distance, t time) for a spe-
cific downstream region along the flow and for a given set of
parameters. These parameters are the Reynolds number, the Kap-
itza or Weber number and the downstream location along the flow.
In the present case all the experiments were performed using the
same fluid in just one temperature T = 20 ± 0.2�C at the same mea-
surement locations along the flow so the only actual parameter is
the Re number controlled through the flow rate. For a given Rey-
nolds the other parameters are uniquely determined. The shape
reconstruction can be achieved by considering the temporal data
h1(t) at the first measurement location and proceeding along the
flow exploring the correlations between the data hi(t) of consecu-
tive measurement locations. In any case the first step in this proce-
dure is the successful reconstruction of the trace in a single
measurement location which is the focus of the present work. It
is noted that a first order approximation of h(x, t) around the mea-
surement point i, can be found by simply transforming time into
distance multiplying it by wave celerity. Nevertheless the final
aim is to reconstruct h(x, t) along the whole measurement region.
Combining the known h(x, t) with mathematical models for the
flow field, the velocity profiles will be estimated with a computa-
tional effort much less than if h(x, t) was unknown.

The structure of the present work is the following: First, avail-
able information on large waves and how they can be used for
the reconstruction is described. Next, some intuitive approaches
to generate secondary (smaller) waves are presented. Finally, the
reconstruction procedure is described in detail and several indica-
tive results are given and discussed.
2. Background

Details on the experimental setup and procedures for obtaining
film thickness data are given elsewhere (Karapantsios and Karabe-
las, 1995). We repeat here only some information essential to
understand the experimental system where we applied the present
analysis. Film flows are realized inside a vertical 5 cm id tube with
2.5 m total length. Data are obtained at distances 1.73, 1.83, 1.90
and 2.00 m from the liquid entry in order to avoid end effects.
The analysis performed in our previous work (Kostoglou et al.,
2009) showed non-detectable differences of film properties among
the measurement locations. This indicates that the flow evolution
along the region of measurements is very small so it can be ig-
nored. This does not necessary mean that fully developed flow
has been reached since there is evidence in literature that dis-
tances larger than 3–4 m are required for full flow development
(Ganchev and Kozlov, 1973). In case of non-fully developed flow
field the extent of flow development can differ from one Reynolds
to another suggesting the distance from the liquid entry as a third
state parameter of the analyzed flow (the other two are Reynolds
number and temperature).

Data cover the range 830 6 Re 6 11000 with Re = 4 C/l,
where C is the mass flow rate over the wetted perimeter of
the tube and l the dynamic viscosity of the liquid. Experiments
are conducted with filtered, deaerated tap water at
T = 20� ± 0.2�C. Measurements of film thickness versus time are
taken by the well known parallel wire conductance technique
on which this group has considerable experience (e.g., Karapants-
ios et al., 1989, 1995). Flush mounted plugs furnished with two
parallel wires (�0.5 mm diameter, �2 cm length and �2 mm
apart in the horizontal direction) protruding laterally into the
falling film are employed for measurement. Although the parallel
wire technique is intrusive it is preferable to optical techniques
which are unable to give reliable signals at steep slopes of the
interface (Helbig et al., 2009) as is the case for the large waves
of wavy turbulent films. On the other hand, techniques involving
flush mounted electrodes are not sensitive to height variations
for such thick films (Chu and Dukler, 1974). It must be stressed,
however, that for the present study it is irrelevant which tech-
nique is used to obtain film thickness data since the analysis
can be applied to data from any technique.

Data are collected with a 400 Hz sampling frequency which was
found adequate for capturing the features of such films. Tests with
frequencies up to 16 kHz did not yield any new film features
implying that it is rather the spatial resolution (distance between
parallel wires) than the temporal resolution that dictates measur-
ing sensitivity. Three records of 5 s each are acquired at every flow
rate (Reynolds number) and for all plug locations to check for
repeatability and further increase the confidence of the calculated
statistics. The estimated overall error in film thickness measure-
ments – including, calibration, measurement, digitization and data
handling is always less than 7%.

It is generally accepted (e.g. Telles and Dukler, 1970; Chu and
Dukler, 1974; Takahama and Kato, 1980; Karapantsios et al.,
1989) that a falling film consists of four elements: (i) substrate,
(ii) large waves (also termed roll waves) which are waves with
amplitude higher than the average film thickness, have, (iii)
ripples which have amplitude lower than have and are located
between large waves and (iv) capillary waves which are very
small waves of high frequency that can be found anywhere at
the surface of the film apart from the highest parts of large
waves. Inspection of pertinent literature reveals that, apart from
their size and frequency, there is no other generally accepted
physically-based criterion for distinguishing capillary waves from
ripples. By convention, as capillary waves are characterized small
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film thickness undulations with amplitude at least about an or-
der of magnitude smaller than the minimum film thickness and
with frequency at least about an order of magnitude higher than
the frequency of ripples. These characteristics are respected in
the present work.

The scope of this paper is to propose a method of stochastically
reconstructing film thickness traces resembling as much as possi-
ble those measured experimentally. There can be several ways of
reconstruction based on different principles (e.g. based on Fourier
spectra of the time series). It is believed that the reconstruction
principles proposed by Touglidis et al. (2004) for an hierarchical
approach based on the height of individual waves offer distinct
advantages. The reconstruction of each element is based on differ-
ent criteria. The most important element of the reconstruction is
the region of large waves.
300
3. Reconstruction of local temporal data

3.1. Available information on large waves

First, large waves are considered as they constitute the largest
and fastest region of liquid. In Touglidis et al. (2004) waves are
chosen progressively from the highest one to smaller ones until a
nominal frequency estimated from Fourier spectra analysis is
reached. In the present work ‘‘large” are considered all waves as
long as their height exceeds the average trace thickness. The idea
is to ‘‘filter” the experimental time series data retaining only the
large waves. Then the shape information of each wave is reduced
by approximating it with a certain mathematical function with un-
known parameters. Finally, the probability density functions (PDF)
of these parameters are derived.

The details of the data analysis of the acquired large waves is
presented elsewhere (Kostoglou et al., 2009). Here we present only
a summary to allow the reader appreciate the reconstruction pro-
cedure. Large waves are approximated by the function
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Fig. 1. Histogram of the experimental PDF for parameter w.
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Fig. 2. Histogram of the experimental PDF for parameter c.
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Parameters b, w and c stand, respectively, for wave amplitude
(mm), wave time–length (s) and time–distance of the peak from
the beginning of the wave (s). In particular, w is not the actual
wave time–length but a representative parameter which has the
merit to be independent from the other two (b, c) having a well de-
fined physical meaning. The actual wave time–length P (defined as
the time span between the two points of the wave having height
ub with u being a small number) is related to w through the rela-

tion P ¼ c � e
w
c

ffiffiffiffiffiffiffiffiffiffiffi
�2 lnu
p� �

� e �w
c

ffiffiffiffiffiffiffiffiffiffiffi
�2 ln u
p� �� �

. Parameters a and e do not

have any physical meaning regarding the wave shape; they are
auxiliary parameters used solely to achieve the best possible fitting
by the particular function.

The essential fitting parameters b, c, w are registered only if the
fitting quality exceeds a certain value. In this way a few irregular
large waves are disregarded. Several researchers have fitted the
shape of large waves with the log-normal (Takahama and Kato,
1980) or Gamma distribution (Telles and Dukler, 1970) but the
proposed distribution has the advantage that its parameters are
uncorrelated to each other and so they obey independent PDFs.
This means that the three dimensional PDF of the parameters
b,c,w can be written as a product of three one dimensional PDFs.
The PDFs of b, c and w are computed for each Reynolds number
and each measurement location. The main conclusions regarding
these PDFs are (Kostoglou et al., 2009):
(1) There is no dependence at any level of significance on mea-
surement location. This observation confirms that the flow
can be considered in a quasi-stationary state along all the
examined measurement locations.

(2) The PDF of parameter w is independent from Reynolds num-
ber. So a single (master) PDF is constructed for w using all
the available data (nine Reynolds numbers and four mea-
surement locations). This distribution – Pw(w) is shown in
histogram form in Fig. 1.

(3) The PDF of parameter c is bimodal and exhibits a small
dependence on Reynolds number. The low value mode of
the PDF decreases and the high value mode increases as Rey-
nolds increases. For practical purposes, this slight depen-
dence can be ignored and the PDF of c can be assumed
independent from Reynolds number during the reconstruc-
tion procedure. The average PDF of c–Pc(c)-constructed from
all available data is shown in histogram form in Fig. 2.

(4) The situation for the PDF of b is more complex because it
depends strongly on Reynolds number (but not on down-
stream measuring location). For the reconstruction proce-
dure, the problem is how to construct a PDF function
�Pb(Re) for an arbitrary Reynolds number from the experi-
mentally known PDFs at different Reynolds numbers. The
experimental PDFs are different enough from each other to
permit any kind of direct interpolation as it would be the
case for just slightly different distributions. To overcome this
problem the experimental PDFs are fitted by the following
Gamma distribution:
PbðyÞ ¼
1

cc1
2 Cðc1Þ

yc1�1e�y=c2 ð2Þ

where c1 and c2 are fitting parameters and C is the well
known Gamma function defined as CðyÞ ¼

R1
0 zy�1e�zdz.
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For all the experimental Reynolds numbers the fitting pro-
cedure has been very successful as it is shown for the typ-
ical comparison between experimental PDFs and fitting
results in Fig. 3. The fitting parameters c1 and c2 are shown
(with corresponding trendlines) versus Reynolds number in
Fig. 4a and b. Both parameters increase with Reynolds
number.

(5) Fig. 5 displays the experimental PDFs of the time intervals
(Dt) between the peaks of consecutive large waves for three
Reynolds number (representative of the whole studied Rey-
nolds range). For the smaller Reynolds numbers the PDF is
very close to the exponential shape indicating random depo-
sition (placement) of large waves on the available time
domain (no interaction between waves). This observation
is in accordance with the random deposition wave proce-
dure employed by Touglidis et al. (2004). For Reynolds num-
ber higher than 3000 a second mode emerges in the PDF and
gradually grows as Reynolds increases. This behavior indi-
cates a progressively increasing ‘‘repulsion” between large
waves in the available time domain. This may explain the
failure of the random deposition procedure of Touglidis
et al. for Re > 5000. In order to account for a general PDF of
Dt during the reconstruction, it is necessary to employ the
technique of sequential addition of waves to the time series.
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It is noted that although the analyzed data and the recon-
struction procedure are strictly 2-D, several features presented
above may be explained considering the 3-D structure of the
waves. Waves on a free falling film are usually horseshoe-
shaped, and the amplitude and shape of their sections along
the flow vary significantly with transverse distance (Adomeit
and Renz, 2000). Probability of accounting the central part of
the wave by the measuring probe is comparable to probability
of accounting one of the ‘‘tails” of the wave. e.g., the amplitude
of the wave decreases from the central part to the ‘‘tails” so it
influences the distribution of wave shape parameters. This fact
may explain the bimodal shape of the PDF of parameter c in
Fig. 2. This could be possible in case the transition from the
steep front slope at the central part of the wave to the flat slope
at the ‘‘tail” of the wave is rather sharp.

In addition, the presence of 3-D waves might explain the bimo-
dal shape of some distributions of separation time in Fig. 5. The
first peak in the distribution corresponds to nearly minimal possi-
ble distance between the two waves, traveling along the same line;
the second peak corresponds to the nearly minimal possible dis-
tance between the two waves with different centerlines at the
same actual minimal distance. The higher the number of waves
per unit length (that grows with Re), the higher the possibility of
two waves to be jammed to each other with different centerlines.
Nevertheless, the above are just speculations. Only by having data
at several transverse locations it is possible to reach an under-
standing of the 3-D structure of the waves and extend the present
approach to the third dimension.

Other important statistical quantities of the film that are used in
the reconstruction procedure is the average value have of the film
thickness, the standard deviation sh and the minimum film thick-
ness hmin. Computing these values for each experimental time
trace, gives

have ¼ 1:78� 10�4Reþ 0:22 Re 6 3080

have ¼ 0:93� 10�4Reþ 0:482 Re > 3080
ð3Þ

Predictions of Eq. (3) deviate by less than 3% from the predic-
tions of the empirical formula proposed by Karapantsios and Kara-
belas (1995) (their Eq. (2)) and is used here for simplicity.

The experimental sh data cannot be fitted by a simple function
since the scatter among runs is considerable, Fig. 6. The average
hmin value (i.e., mean value among similar runs) can be represented
versus Reynolds as
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hmin ¼ 4 � 10�5Reþ 0:129 Re 6 2470
hmin ¼ 0:22 2470 < Re 6 7160

hmin ¼ 3 � 10�5Reþ 0:0252 Re > 7160

ð4Þ

The above representations for have and hmin are by no means
proposed as satisfactory descriptive formulas of their dependence
on Re. It is simply a convenient way to incorporate them to the
reconstruction procedure based on experimental evidence. In the
future, more realistic models of general validity can be used.

In addition, it is noted that hmin does not show a consistent statis-
tical behaviour. Only a very small portion of the time series (a few
points per thousands) takes values less than 1.1 � hmin which means
that hmin corresponds to a rare event and its value must be viewed
with caution during the reconstruction procedure. Nevertheless hmin

is a good choice for a parameter to use for the reconstruction of the
substrate since the final reconstruction quality is very little sensitive
to the exact value of hmin. In addition, it is very difficult to use other
alternative statistical features of the substrate e.g. the average value,
since they cannot be distinguished from ripples waves.
3.2. Approaches for the description of ripples and capillary waves

Since large waves influence both have and sh, their reconstruc-
tion must be an exact representation of the structure of experi-
mental large waves as described by the criteria 1–5 above.

On the other hand, ripples are added in an empirical way in or-
der to match the have of the experimental time trace (since the
influence of ripples on sh is negligible). Therefore, the final distribu-
tion of ripple waves is not an actual representation of the actual
data but expresses just a possibility. The selection of a particular
model for ripples and its acceptance is based mainly on the com-
parison between reconstructed and experimental data.

Capillary waves are added empirically as a type of surface
roughness without any relation to experimental data. This is so be-
cause the finite size of the measuring probe (distance between par-
allel wires), of the order of the size of capillary waves, did not allow
resolving them accurately. One may argue that in such cases it is
preferable to just smooth out roughness from experimental traces
and forget about it. Yet, this was customary not done in literature
in an effort to stress that capillary waves do exist on flowing films
and in spite of measuring problems it is better not to ignore them
giving the false impression that the surface is smooth. In line with
this, we tried also to add empirically capillary waves on our wavy
surfaces which apparently do not represent accurate data but
emphasize that these films are not smooth and an algorithm
should take care of their presence as well.

An important property of the experimental time series is that the
distribution of the excess instantaneous film thickness h(t) � hmin

can be well described by a Weibull distribution (Karapantsios et al.,
1989) (which is a generalized Gamma distribution in the context of
statistics, a special type of the Pearson type III distribution in the
context of polymer science and the Rosin–Ramler distribution in
the context of particulate technology). The cumulative distribution
of y(t) = h(t) � hmin must be successfully fitted by the equation
1� e�ðy=cÞ

k
. As it is well known from the use of Rosin–Ramler distribu-

tion the problem of finding the parameters k and c can be reduced
after the proper data transformation to a straight line fitting problem.
The requirement to represent the data by a Weibull distribution im-
plies the existence of waves at the whole range of amplitudes. That is,
the large waves alone can never fulfill this requirement. The good fit-
ting of the cumulative distribution h(t) � hmin by the Weibull func-
tion is a necessary requirement for the reconstructed data.

Regarding ripples, the key is to invoke an argument of shape
similarity between different amplitude waves. That is, we assume
that ripples have the same shape (i.e. Eq. (1)) as large waves and
differ only in amplitude. On this account, the parameters c, w of
ripples are assumed to follow the same PDF as the corresponding
parameters of large waves. It is noted that there are always some
waves slightly smaller than have which are too large to be consid-
ered ripples. Also there are some waves slightly larger than have

disregarded during the fitting procedure and not counted as large
waves. The above two types of waves were collectively termed as
intermediate waves in Touglidis et al. (2004) and they were han-
dled separately from ripples. This approach increased dramatically
the computational load of Touglidis et al. (2004) procedure. Here
an attempt is made to parameterize these waves simultaneously
with ripples to reduce the complexity of the reconstruction algo-
rithm. The main idea is that all other waves apart from large and
capillary waves (henceforth referred to as ‘‘secondary waves”)
can be described by the w and c PDFs of large waves and by the fol-
lowing truncated Gamma distribution for b:

PRðyÞ ¼
yk1�1e�y=k2R dðhave�hminÞ

0 zk1�1e�z=k2 dz
ð5Þ

This distribution of secondary waves can be constructed according
to the following criteria:

(i) The distribution is truncated to the wave amplitude
d(have � hmin). The particular scaling was chosen in order to mini-
mize the influence of Reynolds number and to keep as parameter
only the dimensionless quantity d. It is noted that d = 1 means that
all secondary waves are below have whereas for d > 1 there are sec-
ondary waves above have (in the region of large waves).

(ii) The maximum value of the distribution, bRmax, corresponds
to the most frequent amplitude of ripples. By simple algebra it
can be found that k1 = 1 + bRmax/k2.

(iii) The value of the distribution at the point of truncation is
parameterized by the cumulative value F of a non-truncated
Gamma distribution at the truncation point y = d(have � hmin).
According to the above criteria the parameter k2 can be found from
the solution of the following equation:
1

k1þbR max=c2
2 Cð1þ bR max=k2Þ

Z dðhave�hminÞ

0
ybR max=k2 e�y=k2 dy ¼ F ð6Þ

The left hand side of this equation is transformed to an incom-
plete Gamma function which can be computed using special algo-
rithms (Press et al., 1986). Then the equation is solved for k2 using
the bisection technique. Finally, k1 and k2 are substituted in Eq. (5)
and the PDF of b of the secondary waves is derived.
4. Reconstruction procedure

The reconstruction procedure is as follows: First, a Reynolds
number, a frequency (data points per second) and the time–
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length of the reconstructed trace are introduced. At present, the
frequency is set at 400 Hz (equal to the employed experimental
sampling frequency) and the trace time–length is at 5 s, long en-
ough for the stabilization of integral statistical quantities. The
substrate thickness is set equal to the experimental value of hmin

predicted by Eq. (4). The critical step in the reconstruction proce-
dure is the generation and addition of large waves onto the sub-
strate. The PDF of Dt between the peaks of waves are
constructed by linear interpolation between the experimental
PDF functions with Reynolds number as the interpolation param-
eter. The PDFs of w and c are fixed (not depended on Reynolds)
and the PDF of b is given by the Gamma distribution with
parameters taken by linear interpolating between the parameters
values for the experimental PDFs shown in Fig. 4. An attempt to
use fitted functions (e.g. trends lines in Fig. 4) instead of linear
interpolation was not successful because the fitting value of k2

is in some cases pretty different from the experimental values
and the reconstructed trace properties are different from those
of the experimental trace violating the major criterion of the
success of reconstruction.

The PDFs of Dt, b, c, w are transformed to cumulative distribu-
tions. The uniformly distributed random numbers produced by
the computer are transformed to random numbers from the
above PDFs by employing the inversion approach. Having gener-
ated the parameters Dt, b, c, w of a new wave, this is added to
the trace in such a way that its peak is located at position
t + Dt where t is the peak location of the previous wave. This
procedure continues until covering the whole pre-specified time
length. It must be noted that the number of large waves in the
reconstructed trace is not an input parameter but a result pro-
duced by the algorithm. Furthermore, the employed procedure
does not require repetitive corrections of the deposited waves
in order to match the standard deviation of the experimental
data as this quantity is automatically adjusted by proper han-
dling of b and Dt distributions. These points are serious improve-
ments compared to Touglidis et al. (2004).

After the addition of large waves the cumulative distribution of
film thickness is calculated. Under no circumstances this distribu-
tion can be approximated by a Weibull distribution. In order to
make this approximation possible not only ripples but also inter-
mediate waves must be added. The proposed generalized distribu-
tion of secondary waves takes care of this.

The input parameters for the amplitude distribution of second-
ary waves are the frequency fR, the most frequent amplitude bRmax,
the fraction F(0 < F < 1) and the length scaling parameter d. For a
given set of these parameters, the PDF of b is constructed as de-
scribed previously and values of the stochastic parameters b, c, w
are produced using the inversion technique and the corresponding
PDFs. The number of generated waves is computed according to
the required frequency (see below). These waves are then depos-
ited on the pre-specified time–length in a uniformly random
way. A special deposition technique is employed during the depo-
sition of secondary waves which takes care of possible overlapping
between secondary and large waves such as at each point of the
reconstructed series only points with the highest thickness value
survive.

Regarding capillary waves, the aim is to produce the same sur-
face roughness impression observed in the experimental traces.
Due to their very small size certain assumptions can be made which
ease the computations without a real effect on the statistical prop-
erties of the reconstructed time series. Capillary waves are initially
assumed to have the specific wave shape described by Eq. (1). After
extensive comparisons with experimental data their amplitude is
chosen bcap = 0.025 mm (roughly equal to 0.1 � hmin) and time–
length Pcap = 0.005 s. Capillary waves are added at a uniformly ran-
dom fashion with a pre-selected high frequency (usually 1000 Hz).
It must be stressed that this high frequency does not turn up from
experimental evidence since the finite size of the measuring probe
did not allow sensing accurately capillary waves. Instead, capillary
waves parameters are chosen empirically based on a similarity con-
cept with larger waves. The above parameters result in exceeding
overlapping among capillary waves which practically means that
their initial shape is lost and so the film surface appears to have a
stochastic roughness. The deposition of capillary waves follows
the same principle of survival of the highest points but they are al-
lowed to have additive overlap only with the secondary waves and
substrate but not with large waves. In addition to the reconstruc-
tion parameters fR, bRmax, F, d, an increase of the substrate thickness
hmin is permitted given the nature of this variable (discussed above).

Our attempt at this work is to achieve successful reconstruc-
tions for the Reynolds numbers of our experimental data by prop-
erly adjusting the above parameters. This attempt is proved
successful for all Reynolds number:

(i) The average number of large waves is similar for the recon-
structed and experimental results. This average number increase
from 8.5 waves/s (Re = 830) to 13 waves/s (Re = 11000). The argu-
ment of independency of wave frequency from Reynolds (Touglidis
et al., 2004) does not hold. This is somewhat not so surprising since
those authors worked in a much narrower range of Reynolds
numbers.
(ii) The average film thickness and standard deviation of the
reconstructed film trace are similar to the experimental values. It
is noted that an exact coincidence is without meaning because
although the average data for the reconstructed traces are exact
(taken from a large number of runs) the experimental averages
are just estimations due to the limited number of data.

(iii) The cumulative distribution of the reconstructed film thick-
ness is successfully fitted by the cumulative function of the Wei-
bull distribution.

(iv) The reconstructed traces look alike the experimental ones.
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The issue is for what values of the unknown parameters (func-
tion of Reynolds in the general case) a successful reconstruction is
achieved. The parameter bRmax is set equal to 0.1 (as for the uni-
form amplitude ripples in Touglidis et al., 2004). The parameter F
is set equal to 0.95 corresponding to a small degree of truncation.
Finally, the parameter d is set equal to 1.25 which means that a few
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large waves are also produced by the secondary wave algorithm.
The PDF of b of secondary waves of course depends on Reynolds
number (the larger the Reynolds the larger the b range) but the
normalized variable b/(have � hmin) absorbs all the Reynolds depen-
dence and its PDF is independent from Reynolds. The shape of this
PDF is shown in Fig. 7. So, the only remaining undefined parameter
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Table 1
Values of have and sh for the simulation cases presented in Fig. 9, juxtaposed with the
corresponding Reynolds number experimental limits.

Reynolds Fig. 9 case Simulation values (mm) Experimental limits (mm)

830 (a) have = 0.346 0.33 < have < 0.407
sh = 0.16 0.136 < sh < 0.214

2470 (c) have = 0.657 0.593 < have < 0.764
sh = 0.328 0.232 < sh < 0.388

5290 (e) have = 1.022 0.825 < have < 1.104
sh = 0.547 0.535 < sh < 0.779

7160 (g) have = 1.15 1.065 < have < 1.294
sh = 0.72 0.627 < sh < 0.909

11000 (i) have = 1.444 1.39 < have < 1.62
sh = 0.756 0.652 < sh < 0.926
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Fig. 10. Cumulative film thickness distribution and the corresponding fitting based
on the Weibull distribution for two Reynolds numbers.
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is the frequency of the secondary waves. Values of this parameter
that are found to achieve successful reconstruction are shown ver-
sus Reynolds number in Fig. 8.

The shape of the frequency versus Re curve is very interesting.
There is a linear dependence for Re < 1800, a constant value in
the region 1800 < Re < 5500 and again a linear dependence for
Re > 5500. In order to get some idea about the origin of this behav-
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Fig. 11. Running values for the value average and standard deviation of film thickness
iour let us start with the observation that the experimental fre-
quency of ripples does not depend on Re number (Chu and
Dukler, 1974). The frequency fR, however, is not the observed fre-
quency since many of these waves are lost due to overlapping by
large waves or by other secondary waves. As Re increases the
length of large waves increases (proportionally to b which depends
on Re), the number of large waves increases and the length of the
ripples increases (proportionally to b for ripples which depends on
have � hmin which in turn depends on Re). To counterbalance these
three factors, fR must follow Fig. 8 in order to ensure a more or less
Re independent reconstructed frequency of ripple waves.
5. Results and discussion

The reconstruction algorithm proved effective to reproduce film
thickness traces of arbitrary duration and data frequency for any
Reynolds number between 830 and 11000 by simply using a value
of fR taken from the linear interpolation between the data of Fig. 8.
Some typical comparisons between the experimental and recon-
structed traces for representative Reynolds number are presented
in Fig. 9. The simulated traces match the experimental ones in
the average film thickness value, standard deviation, wave fre-
quency, wave separation (in time units) and in addition film they
follow the Weibull distribution. Wave frequency and wave separa-
tion can be directly discerned and compared between simulations
and experimental traces. This is not easy, though, for parameters
such as the average film thickness and standard deviation. To sup-
port the correctness of the algorithm, Table 1 presents values of the
average film thickness and standard deviation for the simulated
traces of Fig. 9 and the experimentally determined range of these
two parameters for the corresponding Reynolds number. Apart
from the above match of statistical parameters, the reconstructed
traces resemble the appearance of experimental traces – from a
stochastic standpoint – for all the examined Reynolds numbers.
It is worth mentioning that not only individual waves look alike
but also double and triple waves are successfully reconstructed
indicating that the dynamic nature of overriding/overlapping
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waves is efficiently depicted in the simulated data. This was indeed
a challenge for Reynolds above 3000 where ‘‘repulsion” between
large waves is noticed in the experimental traces and this is where
the earlier work of Touglidis et al. (2004) has failed.

Fig. 10 compares the cumulative film thickness distributions of
the reconstructed traces at two Reynolds numbers with the Wei-
bull distribution. Evidently, the agreement is good over the full
range of film thickness despite the considerably different shape
of the cumulative distributions for the two Re numbers. This is a
proof that the algorithm is equally effective regardless if there is
a more uniform spread a wave sizes (high Re) or a dominant range
of wave sizes (low Re).

From a technical point of view it is interesting to determine the
minimum duration of the simulation which is required to achieve
convergence in some integral properties such as the average value
and the standard deviation of film thickness. Fig. 11 presents rep-
resentative graphs (Re = 1810 and 7160) of these two statistical
quantities against the duration of the film thickness trace. Accord-
ing to this figure, 4 s are enough for the satisfactory convergence of
the two properties for both experimental and reconstructed data.
6. Conclusions

In the present work an algorithm is developed for the recon-
struction of local film thickness time series for free falling films
in turbulent wavy flow. The algorithm is based on information in-
voked from the behaviour of large waves in experimental data ser-
ies. Large waves are reconstructed assuming a specific wave shape
with size parameters directly sampled from PDFs derived using the
experimental data. The rest of the waves are reconstructed based
on certain assumptions and matching of unknown parameters in
order to achieve reconstructed traces compatible with specific
requirements. The parameters of the algorithm are determined
for the case of water in the Reynolds number range between 830
and 11000 which is the range of existing experimental data. The
developed algorithm is faster than real time and is capable to pro-
duce film thickness traces that cannot be distinguished from
experimental ones over the examined range of Reynolds numbers.
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